ar X iv : d g - ga / 9 50 80 01 v 1 3 A ug 1 99 5 On the L n 2 - norm of Scalar Curvature
نویسندگان
چکیده
Comparisons on L n 2-norms of scalar curvatures between Riemannian metrics and standard metrics are obtained. The metrics are restricted to conformal classes or under certain curvature conditions.
منابع مشابه
ar X iv : c on d - m at / 9 50 80 44 v 1 1 1 A ug 1 99 5 Magnetism of superconducting UPt 3
متن کامل
ar X iv : d g - ga / 9 41 10 11 v 1 2 3 N ov 1 99 4 The number of functionally independent invariants of a pseudo – Riemannian metric
The number of functionally independent scalar invariants of arbitrary order of a generic pseudo–Riemannian metric on an n–dimensional manifold is determined.
متن کاملar X iv : n uc l - th / 9 50 80 11 v 2 1 1 A ug 1 99 5 THE d ’ - DIBARYON IN THE NONRELATIVISTIC QUARK MODEL
The narrow peak recently found in various pionic double charge exchange (DCX) cross sections can be explained by the assumption of a universal resonance at 2065 MeV, called d ′. We calculate the mass of a six-quark system with J P = 0 − , T = 0 quantum numbers employing a cluster model and a shell model basis to diagonalize the nonrelativistic quark model Hamiltonian.
متن کاملar X iv : d g - ga / 9 70 70 17 v 1 2 4 Ju l 1 99 7 SCALAR CURVATURE RIGIDITY FOR ASYMPTOTICALLY LOCALLY HYPERBOLIC MANIFOLDS
Rigidity results for asymptotically locally hyperbolic manifolds with lower bounds on scalar curvature are proved using spinor methods related to the Witten proof of the positive mass theorem. The argument is based on a study of the Dirac operator defined with respect to the Killing connection. The existence of asymptotic Killing spinors is related to the spin structure on the end. The expressi...
متن کاملar X iv : d g - ga / 9 50 70 04 v 1 2 4 Ju l 1 99 5 LOCALISATION OF THE DONALDSON ’ S INVARIANTS ALONG SEIBERG - WITTEN CLASSES
This article is a first step in establishing a link between the Donaldson polynomials and Seiberg-Witten invariants of a smooth 4-manifold.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995